Computation and the Brain
نویسندگان
چکیده
Two very different insights motivate characterizing the brain as a computer. One depends on mathematical theory that defines computability in a highly abstract sense. Here the foundational idea is that of a Turing machine. Not an actual machine, the Turing machine is really a conceptual way of making the point that any well-defined function could be executed, step by step, according to simple “if-you-are-in-state-P-and-have-input-Q-thendo-R” rules, given enough time (maybe infinite time) [see COMPUTATION]. Insofar as the brain is a device whose input and output can be characterized in terms of some mathematical function -however complicated -then in that very abstract sense, it can be mimicked by a Turning machine. Given what is known so far brains do seem to depend on cause-effect operations, and hence brains appear to be, in some formal sense, equivalent to a Turing machine [see CHURCH-TURING THESIS]. On its own, however, this reveals nothing at all of how the mind-brain actually works. The second insight depends on looking at the brain as a biological device that processes information from the environment to build complex representations that enable the brain to make predictions and select advantageous behaviors. Where necessary to avoid ambiguity, we will refer to the first notion of computation as ‘algorithmic computation’, and the second as ‘information processing computation’.
منابع مشابه
Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملParallel computation framework for optimizing trailer routes in bulk transportation
We consider a rich tanker trailer routing problem with stochastic transit times for chemicals and liquid bulk orders. A typical route of the tanker trailer comprises of sourcing a cleaned and prepped trailer from a pre-wash location, pickup and delivery of chemical orders, cleaning the tanker trailer at a post-wash location after order delivery and prepping for the next order. Unlike traditiona...
متن کاملAn Enhanced HL-RF Method for the Computation of Structural Failure Probability Based On Relaxed Approach
The computation of structural failure probability is vital importance in the reliability analysis and may be carried out on the basis of the first-order reliability method using various mathematical iterative approaches such as Hasofer-Lind and Rackwitz-Fiessler (HL-RF). This method may not converge in complicated problems and nonlinear limit state functions, which usually shows itself in the f...
متن کاملInverted Pendulum Control Using Negative Data
In the training phase of learning algorithms, it is always important to have a suitable training data set. The presence of outliers, noise data, and inappropriate data always affects the performance of existing algorithms. The active learning method (ALM) is one of the powerful tools in soft computing inspired by the computation of the human brain. The operation of this algorithm is complete...
متن کاملComputation of the Sadhana (Sd) Index of Linear Phenylenes and Corresponding Hexagonal Sequences
The Sadhana index (Sd) is a newly introduced cyclic index. Efficient formulae for calculating the Sd (Sadhana) index of linear phenylenes are given and a simple relation is established between the Sd index of phenylenes and of the corresponding hexagonal sequences.
متن کامل